Plenary Speakers

The Laser Precision Microfabrication Symposium 2020 is very proud to welcome the following plenary speakers:

Tuesday, 23 June 2020, 09:20 - 10:00 o'clock

Koji Sugioka

RIKEN Center for Advanced Photonics, Japan

Advanced femtosecond laser 3D micro/nanoprocessing

Advanced femtosecond laser 3D micro/nanoprocessing

The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce multiphoton absorption with materials that are transparent to the laser wavelength. More importantly, focusing the fs laser beam inside the transparent materials confines the multiphoton absorption only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. Flexible micro/nanoprocessing with respect to structure, function, and scale is then possible by femtosecond lasers with accurate control on all 3D environments for both inorganic and organic materials. Combination of different schemes of the 3D processing, so called, hybrid femtosecond laser 3D processing, can further enhance the performance to diversify geometries of the fabricated 3D micro/nanostrucstures with enhanced functionalities. In this talk, our recent activities on advanced femtosecond laser 3D micro/nanoprocessing including fabrication of biochips for mechanism study of cancer cell metastasis and invasion, fabrication of 3D microfluidic surface-enhanced Raman spectroscopy (SERS) sensors for ultratrace analysis, and 3D printing of pure protein microstructures are introduced.

Tuesday, 23 June 2020, 13:30 - 14:10 o'clock

Prof. Dr.
Andreas Tünnermann

Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Germany

10 kW-class ultrashort-pulse lasers for industrial applications

10 kW-class ultrashort-pulse lasers for industrial applications

The Fraunhofer Cluster of Excellence Advanced Photon Sources (CAPS) will overcome USP laser power limitations, but also develop technologies along the process chain from pulse generation to process technology, and real-world applications.

In the presentation we will report on the most recent progress in scaling the average output power of femtosecond lasers beyond the 10kW barrier. Two technological paths will be described, coherently combined fiber amplifiers and the Innoslab approach. System performance as well as future perspectives will be reviewed.

In parallel to the laser sources, beam delivery technology is developed to make effective use of the radiation. While the CAPS-partners develop a range of new technologies, their ambition is actually to make the USP laser a tool with average powers of current CW fiber lasers plus the unique features of USP lasers, including high precision and low or no dependency from the processed material.

Tuesday, 23 June 2020, 16:10 - 16:50 o'clock

Nicholas X. Fang

Department of Mechanical Engineering, MIT, USA

Meta-Manufacturing: Multiscale and Multifunctional Manufacturing at Digital Age

Meta-Manufacturing: Multiscale and Multifunctional Manufacturing at Digital Age

Advanced manufacturing has become the powerhouse that trigger innovation of intelligent, flexible, customer-oriented product development and new business models in the industrial ecosystem worldwide. Transformation and adaptation of advanced manufacturing technologies, such as 3D printing, artificial intelligence, virtual and augmented reality, the internet of things and next-generation robotics, highlight the importance of data and interconnectivity in the future manufacturing ecosystem. In the meantime, the rapid emergence of ecological constraints calls for integrated functional products and manufacturing solutions that meet the critical societal challenges such as energy efficiency, carbon emission, worker safety, and environmental regulations at large scale. The scientific breakthroughs of data and interconnectivity driven manufacturing may lead to a paradigm shift of meta-manufacturing, that is, design and processing multifunctional elements at unprecedented precision and heterogeneity. In this plenary talk, I will present our research vision towards a library of accurate designer voxels with predictive analytics that capture essential mechanical and physical properties based on the microstructure. These multifunctional elements can be exemplified by the emerging architectured metamaterials with integrated functions that are desirable for a broad array of applications in confined spaces, including impact absorption, thermal management and chemical processing, optical transparency, structural morphing, as well as real time monitoring and repair.

Friday, 26 June 2020, 09:00 - 09:40 o'clock

Jiyeon Choi

Korea Institute of Machinery & Materials (KIMM), Korea

Ultrafast laser processing to innovate consumer electronics manufacturing

Ultrafast laser processing to innovate consumer electronics manufacturing

For last decade, ultrafast lasers have become attractive tools for consumer electronics manufacturing such as mobile display, flexible electronics, and electric vehicles by providing breakthrough to overcome existing huddles in current production technology. In Korea, which is one of the most fast-varying countries in such fields, ultrafast laser processes have been aggressively adopted in OLED display pixel repair, glass and flexible film cutting, electrode patterning, and other critical processes by manufacturers. The department of laser and electron beam application at Korea institute of machinery and materials (KIMM) and our industrial partners have tried to bring  the cutting-edge ultrafast laser technology to production sites.

This presentation introduces our recently demonstrated approaches in developing novel processes and relevant optical systems maximizing the benefit of ultrafast lasers. Firstly, tailoring of material properties by ultrafast lasers to enhance the device efficiency of organic electronics is presented. Laser induced photo-expansion and molecular reorientation is investigated as a new pathway to increase the quantum efficiency of OPVs. The surface engineering of the organic devices to enhance the crystallinity of organic semiconducting thin film will also be presented as another example of the localized tailoring of material properties. Secondly, the ultrafast laser systems for precision micromachining of the OLED display pixel (pixel repair) and electrode patterning of composite flexible film for OLED lighting are presented.  

Friday, 26 June 2020, 13:20 - 14:00 o'clock

Prof. Dr. Ir.
Hugo Thienpont

Vrije Universiteit Brussel - Brussels Photonics, Belgium

Pan-European Photonics Innovation Support for Companies and Researchers: ongoing initiatives and future opportunities

Pan-European Photonics Innovation Support for Companies and Researchers: ongoing initiatives and future opportunities.

In this presentation we will highlight the different ongoing pan-European initiatives that aim at supporting both photonics and non-photonics companies, as well as entrepreneurial-minded researchers with the best possible photonics innovation support accessible in Europe. These innovation support offerings are financially subsidized by the European Commission and the European Public Private Partnership “Photonics 21” and are at present separate initiatives of different European consortia in which research and technology organizations team up to make the best experts and technology platforms available at various Technology Readiness Levels. A first initiative ACTPHAST supports SMEs and researchers at Technology Readiness Levels 3-4 with photonics feasibility studies and prototyping support. Its offerings are complemented by Pilot Lines such as PIXAPP, LYTEUS, InPulse, MIRPhAB, PIX4life, PHABOULuS, and MEDPhab for innovation support at TRLs 5-6 with upscaling and low-volume manufacturing of optical and photonic components such as photonic integrated circuits, infrared optoelectronics, and flexible organic light emitters, and their respective packaging. In this presentation we will give an overview of the various offerings of these Photonics21-driven initiatives for companies and researchers; we will explain how to access them, give real-world examples of what is being accomplished, and provide -wherever possible- their quantitative impact on the European industry ecosystem. To conclude we will introduce PhotonHub Europe as a future opportunity to combine all these individual initiatives under one roof to operate as a Photonics Innovation Hub. PhotonHub Europe aims at offering the most comprehensive set of photonics innovation support spanning the TRL 3-8 supply chain from feasibility study to manufacturing in Europe, accompanied with business plan coaching and investment mentoring for SMEs and deep technology training in photonics experience centers for technical staff.

Friday, 26 June 2020, 14:00 - 14:40 o'clock

David R. Harding

Laboratory for Laser Energetics, University of Rochester, USA

Laser-based microfabrication and metrology of laser-driven inertial fusion targets

Laser-based microfabrication and metrology of laser-driven inertial fusion targets

While high-power lasers enable laser-driven inertial fusion and high-energy-density–physics experiments, low- power lasers are increasingly used to make and characterize the targets at micro/nanoscales for those experiments. The feature of particular importance is the high power density achievable with femtosecond lasers, which provides the spatial resolution that is needed to apply additive manufacturing and a new generation of characterization techniques to this field. Millimeter-size plastic shells with smooth surfaces and submicrometer cellular (foam) structures are made using the two-photon polymerization process. While this application is in its infancy, the potential to make targets more deterministically, consistently, and efficiently than existing methods is compelling. The goal is to make structures with a surface smoothness 50-nm rms and feature sizes 0.5 ❍m over dimensions up to 5 mm; the process conditions needed to achieve this and the capabilities and current limitations of this technique are described.

A second application of lasers in this field is in the traditional role of ablation to produce structured surfaces and precise pinhole-aperture arrays. These structures are used to increase x-ray emission from a surface and to produce high-resolution imaging systems to better diagnose laser-driven implosions. A third application is to use coherent anti-Stokes Raman spectroscopy (CARS) to produce a 3-D topographical map of the elemental composition of a laser-fusion target. Initial experiments demonstrated micrometer-scale imaging of a 0.9-mm-diam polystyrene shell to identify the presence of voids in the material; this was achieved by sectional imaging to scan horizontal 2-D slices vertically through the target and detecting the presence or absence of Raman-active bands of C-H stretching bonds at 2800 to 3000 cm–1. This application is being extended to image the distribution of the hydrogen isotopes inside the fuel layer of the polystyrene shell—which is a shell of frozen deuterium and tritium. These data will provide greater resolution and sensitivity than the technique, tunable infrared diode laser spectroscopy, to address an important question that until now could not be diagnosed.

The Plenary Lectures will be presented by the Gold Partner of LPM 2020